A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity
نویسندگان
چکیده
Development of an accurate protein-DNA recognition code that can predict DNA specificity from protein sequence is a central problem in biology. C2H2 zinc fingers constitute by far the largest family of DNA binding domains and their binding specificity has been studied intensively. However, despite decades of research, accurate prediction of DNA specificity remains elusive. A major obstacle is thought to be the inability of current methods to account for the influence of neighbouring domains. Here we show that this problem can be addressed using a structural approach: we build structural models for all C2H2-ZF-DNA complexes with known binding motifs and find six distinct binding modes. Each mode changes the orientation of specificity residues with respect to the DNA, thereby modulating base preference. Most importantly, the structural analysis shows that residues at the domain interface strongly and predictably influence the binding mode, and hence specificity. Accounting for predicted binding mode significantly improves prediction accuracy of predicted motifs. This new insight into the fundamental behaviour of C2H2-ZFs has implications for both improving the prediction of natural zinc finger-binding sites, and for prioritizing further experiments to complete the code. It also provides a new design feature for zinc finger engineering.
منابع مشابه
Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers
Sequence-specific DNA recognition by gene regulatory proteins is critical for proper cellular functioning. The ability to predict the DNA binding preferences of these regulatory proteins from their amino acid sequence would greatly aid in reconstruction of their regulatory interactions. Structural modeling provides one route to such predictions: by building accurate molecular models of regulato...
متن کاملZinc finger proteins: getting a grip on RNA.
C2H2 (Cys-Cys-His-His motif) zinc finger proteins are members of a large superfamily of nucleic-acid-binding proteins in eukaryotes. On the basis of NMR and X-ray structures, we know that DNA sequence recognition involves a short alpha helix bound to the major groove. Exactly how some zinc finger proteins bind to double-stranded RNA has been a complete mystery for over two decades. This has bee...
متن کاملA systematic survey of the Cys2His2 zinc finger DNA-binding landscape
Cys2His2 zinc fingers (C2H2-ZFs) comprise the largest class of metazoan DNA-binding domains. Despite this domain's well-defined DNA-recognition interface, and its successful use in the design of chimeric proteins capable of targeting genomic regions of interest, much remains unknown about its DNA-binding landscape. To help bridge this gap in fundamental knowledge and to provide a resource for d...
متن کاملThe multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain.
Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger pr...
متن کاملStructure-based prediction of C2H2 zinc-finger binding specificity: sensitivity to docking geometry
Predicting the binding specificity of transcription factors is a critical step in the characterization and computational identification and of cis-regulatory elements in genomic sequences. Here we use protein-DNA structures to predict binding specificity and consider the possibility of predicting position weight matrices (PWM) for an entire protein family based on the structures of just a few f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2015